Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Pathogens ; 12(2)2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2200592

ABSTRACT

Many rigorous studies have shown that early childhood infections leave a lasting imprint on the immune system. The understanding of this phenomenon has expanded significantly since 1960, when Dr. Thomas Francis Jr first coined the term "original antigenic sin", to account for all previous pathogen exposures, rather than only the first. Now more commonly referred to as "immune imprinting", this effect most often focuses on how memory B-cell responses are shaped by prior antigen exposure, and the resultant antibodies produced after subsequent exposure to antigenically similar pathogens. Although imprinting was originally observed within the context of influenza viral infection, it has since been applied to the pandemic coronavirus SARS-CoV-2. To fully comprehend how imprinting affects the evolution of antibody responses, it is necessary to compare responses elicited by pathogenic strains that are both antigenically similar and dissimilar to strains encountered previously. To accomplish this, we must be able to measure the antigenic distance between strains, which can be easily accomplished using data from multidimensional immunological assays. The knowledge of imprinting, combined with antigenic distance measures, may allow for improvements in vaccine design and development for both influenza and SARS-CoV-2 viruses.

2.
Vaccines (Basel) ; 10(6)2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-1988044

ABSTRACT

It is currently unclear if SARS-CoV-2 infection or mRNA vaccination can also induce IgG and IgA against common human coronaviruses (HCoVs) in lactating parents. Here we prospectively analyzed human milk (HM) and blood samples from lactating parents to measure the temporal patterns of anti-SARS-CoV-2 specific and anti-HCoV cross-reactive IgA and IgG responses. Two cohorts were analyzed: a vaccination cohort (n = 30) who received mRNA-based vaccines for COVID-19 (mRNA-1273 or BNT162b2), and an infection cohort (n = 45) with COVID-19 disease. Longitudinal HM and fingerstick blood samples were collected pre- and post-vaccination or, for infected subjects, at 5 time-points 14-28 days after confirmed diagnosis. The anti-spike(S) and anti-nucleocapsid(N) IgA and IgG antibody levels against SARS-CoV-2 and HCoVs were measured by multiplex immunoassay (mPlex-CoV). We found that vaccination significantly increased the anti-S IgA and IgG levels in HM. In contrast, while IgG levels increased after a second vaccine dose, blood and HM IgA started to decrease. Moreover, HM and blood anti-S IgG levels were significantly correlated, but anti-S IgA levels were not. SARS2 acute infection elicited anti-S IgG and IgA that showed much higher correlations between HM and blood compared to vaccination. Vaccination and infection were able to significantly increase the broadly cross-reactive IgG recognizing HCoVs in HM and blood than the IgA antibodies in HM and blood. In addition, the broader cross-reactivity of IgG in HM versus blood indicates that COVID-19 vaccination and infection might provide passive immunity through HM for the breastfed infants not only against SARS-CoV-2 but also against common cold coronaviruses.

3.
N Engl J Med ; 386(18): 1700-1711, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1768967

ABSTRACT

BACKGROUND: Polyclonal convalescent plasma may be obtained from donors who have recovered from coronavirus disease 2019 (Covid-19). The efficacy of this plasma in preventing serious complications in outpatients with recent-onset Covid-19 is uncertain. METHODS: In this multicenter, double-blind, randomized, controlled trial, we evaluated the efficacy and safety of Covid-19 convalescent plasma, as compared with control plasma, in symptomatic adults (≥18 years of age) who had tested positive for severe acute respiratory syndrome coronavirus 2, regardless of their risk factors for disease progression or vaccination status. Participants were enrolled within 8 days after symptom onset and received a transfusion within 1 day after randomization. The primary outcome was Covid-19-related hospitalization within 28 days after transfusion. RESULTS: Participants were enrolled from June 3, 2020, through October 1, 2021. A total of 1225 participants underwent randomization, and 1181 received a transfusion. In the prespecified modified intention-to-treat analysis that included only participants who received a transfusion, the primary outcome occurred in 17 of 592 participants (2.9%) who received convalescent plasma and 37 of 589 participants (6.3%) who received control plasma (absolute risk reduction, 3.4 percentage points; 95% confidence interval, 1.0 to 5.8; P = 0.005), which corresponded to a relative risk reduction of 54%. Evidence of efficacy in vaccinated participants cannot be inferred from these data because 53 of the 54 participants with Covid-19 who were hospitalized were unvaccinated and 1 participant was partially vaccinated. A total of 16 grade 3 or 4 adverse events (7 in the convalescent-plasma group and 9 in the control-plasma group) occurred in participants who were not hospitalized. CONCLUSIONS: In participants with Covid-19, most of whom were unvaccinated, the administration of convalescent plasma within 9 days after the onset of symptoms reduced the risk of disease progression leading to hospitalization. (Funded by the Department of Defense and others; CSSC-004 ClinicalTrials.gov number, NCT04373460.).


Subject(s)
COVID-19 , Immunization, Passive , Adult , Ambulatory Care , COVID-19/therapy , Disease Progression , Double-Blind Method , Hospitalization , Humans , Immunization, Passive/adverse effects , Immunization, Passive/methods , Treatment Outcome , United States , COVID-19 Serotherapy
4.
Transfusion ; 62(5): 933-941, 2022 05.
Article in English | MEDLINE | ID: covidwho-1765061

ABSTRACT

Convalescent plasma, collected from donors who have recovered from a pathogen of interest, has been used to treat infectious diseases, particularly in times of outbreak, when alternative therapies were unavailable. The COVID-19 pandemic revived interest in the use of convalescent plasma. Large observational studies and clinical trials that were executed during the pandemic provided insight into how to use convalescent plasma, whereby high levels of antibodies against the pathogen of interest and administration early within the time course of the disease are critical for optimal therapeutic effect. Several studies have shown outpatient administration of COVID-19 convalescent plasma (CCP) to be both safe and effective, preventing clinical progression in patients when administered within the first week of COVID-19. The United States Food and Drug Administration expanded its emergency use authorization (EUA) to allow for the administration of CCP in an outpatient setting in December 2021, at least for immunocompromised patients or those on immunosuppressive therapy. Outpatient transfusion of CCP and infusion of monoclonal antibody therapies for a highly transmissible infectious disease introduces nuanced challenges related to infection prevention. Drawing on our experiences with the clinical and research use of CCP, we describe the logistical considerations and workflow spanning procurement of qualified products, infrastructure, staffing, transfusion, and associated management of adverse events. The purpose of this description is to facilitate the efforts of others intent on establishing outpatient transfusion programs for CCP and other antibody-based therapies.


Subject(s)
COVID-19 , COVID-19/therapy , Humans , Immunization, Passive , Outpatients , Pandemics , SARS-CoV-2 , United States , COVID-19 Serotherapy
5.
J Infect Dis ; 226(3): 474-484, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-1758749

ABSTRACT

BACKGROUND: A protective antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to decrease morbidity and mortality from severe coronavirus disease 2019 (COVID-19) disease. The effects of preexisting anti-human coronavirus (HCoV) antibodies on the SARS-CoV-2-specific immunoglobulin G (IgG) responses and severity of disease are currently unclear. METHODS: We profiled anti-spike (S), S1, S2, and receptor-binding domain IgG antibodies against SARS-CoV-2 and 6 HCoVs using a multiplex assay (mPLEX-CoV) with serum samples from SARS-CoV-2 infected (n = 155) and pre-COVID-19 (n = 188) cohorts. RESULTS: COVID-19 subjects showed significantly increased anti-S SARS-CoV-2 IgG levels that were highly correlated with IgG antibodies against OC43 and HKU1 S proteins. However, OC43 and HKU1 anti-S antibodies in pre-COVID-19 era sera did not cross-react with SARS-CoV-2. Unidirectional cross-reactive antibodies elicited by SARS-CoV-2 infection were distinct from the bidirectional cross-reactive antibodies recognizing homologous strains RaTG13 and SARS-CoV-1. High anti-OC43 and anti-S2 antibody levels were associated with both a rapid anti-SARS-CoV-2 antibody response and increased disease severity. Subjects with increased sequential organ failure assessment (SOFA) scores developed a higher ratio of S2- to S1-reactive antibodies. CONCLUSIONS: Early and rapid emergence of OC43 S- and S2-reactive IgG after SARS-CoV-2 infection correlates with COVID-19 disease severity.


Subject(s)
COVID-19 , Antibodies, Viral , Cross Reactions , Humans , Immunoglobulin G , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus
6.
Pathogens ; 11(2)2022 Jan 29.
Article in English | MEDLINE | ID: covidwho-1667262

ABSTRACT

Infection with the ß-coronavirus SARS-CoV-2 typically generates strong virus-specific antibody production. Antibody responses against novel features of SARS-CoV-2 proteins require naïve B cell activation, but there is a growing appreciation that conserved regions are recognized by pre-existing memory B cells (MBCs) generated by endemic coronaviruses. The current study investigated the role of pre-existing cross-reactive coronavirus memory in the antibody response to the viral spike (S) and nucleocapsid (N) proteins following SARS-CoV-2 infection. The breadth of reactivity of circulating antibodies, plasmablasts, and MBCs was analyzed. Acutely infected subjects generated strong IgG responses to the S protein, including the novel receptor binding domain, the conserved S2 region, and to the N protein. The response included reactivity to the S of endemic ß-coronaviruses and, interestingly, to the N of an endemic α-coronavirus. Both mild and severe infection expanded IgG MBC populations reactive to the S of SARS-CoV-2 and endemic ß-coronaviruses. Avidity of S-reactive IgG antibodies and MBCs increased after infection. Overall, findings indicate that the response to the S and N of SARS-CoV-2 involves pre-existing MBC activation and adaptation to novel features of the proteins, along with the potential of imprinting to shape the response to SARS-CoV-2 infection.

7.
Pediatrics ; 149(12 Suppl 2)2022 02 01.
Article in English | MEDLINE | ID: covidwho-1504768

ABSTRACT

Children with intellectual and developmental disabilities (IDDs) and children with medical complexity (CMC) have been disproportionally impacted by the coronavirus disease 2019 pandemic, including school closures. Children with IDDs and CMC rely on schools for a vast array of educational, therapeutic, medical, and social needs. However, maintaining safe schools for children with IDDs and CMC during the coronavirus disease 2019 pandemic may be difficult because of the unique challenges of implementing prevention strategies, such as masking, social distancing, and hand hygiene in this high-risk environment. Furthermore, children with IDDs and CMC are at a higher risk of infectious complications and mortality, underscoring the need for effective mitigation strategies. The goal of this report is to describe the implementation of several screening testing models for severe acute respiratory syndrome coronavirus 2 in this high-risk population. By describing these models, we hope to identify generalizable and scalable approaches to facilitate safe school operations for children with IDDs and CMC during the current and future pandemics.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/organization & administration , Disabled Children , Schools , COVID-19/diagnosis , COVID-19 Testing , Child , Humans , Pandemics
8.
Front Immunol ; 12: 696370, 2021.
Article in English | MEDLINE | ID: covidwho-1357528

ABSTRACT

The COVID-19 pandemic is caused by SARS-CoV-2, a novel zoonotic coronavirus. Emerging evidence indicates that preexisting humoral immunity against other seasonal human coronaviruses (HCoVs) plays a critical role in the specific antibody response to SARS-CoV-2. However, current work to assess the effects of preexisting and cross-reactive anti-HCoVs antibodies has been limited. To address this issue, we have adapted our previously reported multiplex assay to simultaneously and quantitatively measure anti-HCoV antibodies. The full mPlex-CoV panel covers the spike (S) and nucleocapsid (N) proteins of three highly pathogenic HCoVs (SARS-CoV-1, SARS-CoV-2, MERS) and four human seasonal strains (OC43, HKU1, NL63, 229E). Combining this assay with volumetric absorptive microsampling (VAMS), we measured the anti-HCoV IgG, IgA, and IgM antibodies in fingerstick blood samples. The results demonstrate that the mPlex-CoV assay has high specificity and sensitivity. It can detect strain-specific anti-HCoV antibodies down to 0.1 ng/ml with 4 log assay range and with low intra- and inter-assay coefficients of variation (%CV). We also estimate multiple strain HCoVs IgG, IgA and IgM concentration in VAMS samples in three categories of subjects: pre-COVID-19 (n=21), post-COVID-19 convalescents (n=19), and COVID-19 vaccine recipients (n=14). Using metric multidimensional scaling (MDS) analysis, HCoVs IgG concentrations in fingerstick blood samples were well separated between the pre-COVID-19, post-COVID-19 convalescents, and COVID-19 vaccine recipients. In addition, we demonstrate how multi-dimensional scaling analysis can be used to visualize IgG mediated antibody immunity against multiple human coronaviruses. We conclude that the combination of VAMS and the mPlex-Cov assay is well suited to performing remote study sample collection under pandemic conditions to monitor HCoVs antibody responses in population studies.


Subject(s)
Antibodies, Viral/blood , Coronavirus/immunology , Cross Reactions/immunology , Immunoassay/methods , Antibodies, Viral/immunology , Betacoronavirus/immunology , COVID-19/immunology , Coronavirus 229E, Human/immunology , Coronavirus NL63, Human/immunology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus OC43, Human/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
9.
J Clin Transl Sci ; 5(1): e96, 2021 Feb 18.
Article in English | MEDLINE | ID: covidwho-1236040

ABSTRACT

The 2020 COVID-19 pandemic has had a profound impact on the clinical research enterprises at the 60 Clinical and Translational Science Award (CTSA) Hubs throughout the nation. There was simultaneously a need to expand research to obtain crucial data about disease prognosis and therapy and enormous limitations on conducting research as localities and institutions limited travel and person-to-person contact. These imperatives resulted in major changes in the way research was conducted, including expediting Institutional Review Board review, shifting to remote interactions with participants, centralizing decision-making in prioritizing research protocols, establishing biobanks, adopting novel informatics platforms, and distributing study drugs in unconventional ways. National CTSA Steering Committee meetings provided an opportunity to share best practices and develop the idea of capturing the CTSA program experiences in a series of papers. Here we bring together the recommendations from those papers in a list of specific actions that research sites can take to strengthen operations and prepare for similar future public health emergencies. Most importantly, creative innovations developed in response to the COVID-19 pandemic deserve serious consideration for adoption as new standards, thus converting the painful trauma of the pandemic into "post-traumatic growth" that makes the clinical research enterprise stronger, more resilient, and more effective.

10.
J Clin Microbiol ; 59(2)2021 01 21.
Article in English | MEDLINE | ID: covidwho-1041375

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the challenges inherent to the serological detection of a novel pathogen such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Serological tests can be used diagnostically and for surveillance, but their usefulness depends on their throughput, sensitivity, and specificity. Here, we describe a multiplex fluorescent microsphere-based assay, 3Flex, that can detect antibodies to three major SARS-CoV-2 antigens-spike (S) protein, the spike ACE2 receptor-binding domain (RBD), and nucleocapsid (NP). Specificity was assessed using 213 prepandemic samples. Sensitivity was measured and compared to that of the Abbott Architect SARS-CoV-2 IgG assay using serum samples from 125 unique patients equally binned (n = 25) into 5 time intervals (≤5, 6 to 10, 11 to 15, 16 to 20, and ≥21 days from symptom onset). With samples obtained at ≤5 days from symptom onset, the 3Flex assay was more sensitive (48.0% versus 32.0%), but the two assays performed comparably using serum obtained ≥21 days from symptom onset. A larger collection (n = 534) of discarded sera was profiled from patients (n = 140) whose COVID-19 course was characterized through chart review. This revealed the relative rise, peak (S, 23.8; RBD, 23.6; NP, 16.7 [in days from symptom onset]), and decline of the antibody response. Considerable interperson variation was observed with a subset of extensively sampled intensive care unit (ICU) patients. Using soluble ACE2, inhibition of antibody binding was demonstrated for S and RBD, and not for NP. Taking the data together, this study described the performance of an assay built on a flexible and high-throughput serological platform that proved adaptable to the emergence of a novel infectious agent.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Microspheres , SARS-CoV-2/isolation & purification , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/pathology , Coronavirus Nucleocapsid Proteins/immunology , Female , Fluoroimmunoassay , Humans , Immunoglobulin G/blood , Kinetics , Male , Middle Aged , Phosphoproteins/immunology , SARS-CoV-2/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
11.
Clin Lab Med ; 40(4): 603-614, 2020 12.
Article in English | MEDLINE | ID: covidwho-845585

ABSTRACT

The entire spectrum of diagnostic testing, from reagent supply to test performance, has been a major focus during the coronavirus disease 2019 (COVID-19) pandemic. The hope for serologic testing is that it will provide both epidemiologic information about seroprevalence as well as individual information about previous infection. This information is particularly helpful for high-risk individuals who may be outside of the viral shedding window, such as children with suspected multisystem inflammatory syndrome. It is not yet understood whether serologic testing can be interpreted in terms of protective immunity. These concerns must be addressed using highly sensitive and specific tests.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections , Pandemics , Pneumonia, Viral , Seroepidemiologic Studies , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Humans , Immunity, Humoral/immunology , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Protective Factors , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL